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Abstract. In this paper we analyze the convergence of a centered finite-difference approxi- 
mation to the nonselfadjoint Sturm-Liouville eigenvalue problem 

()[u] - [a(x) u']' - b(x)u' + c(x)u = Xu, 0 < x <1, 
u(O) = u(M) = 0 

where V has smooth coefficients and a(x) _ ao > 0 on [0, 1]. We show that the rate of 
convergence is O(LAx2) as in the selfadjoint case for a scheme of the same accuracy. We 
also establish discrete analogs of the Sturm oscillation and comparison theorems. As a 
corollary we obtain the result 

(2) lim sup 
M 
EL- > < 0o 

M-IXo; Axe*o; (M+1)A^x.i p=1 Ap 

where Ax = 1/(M + 1) is the mesh size and AP, VP are the characteristic pairs of L, the 
M X M matrix which approximates V, and VP is normalized so that IIVPI12 = 1. 

1. Introduction. Many authors (e.g. [1], [6], [8], [9]) have studied the convergence 
of finite-difference methods for selfadjoint Sturm-Liouville eigenvalue problems. 
In this report we are concerned with the nonselfadjoint problem 

(u) _-[a(x)u']' - b(x)u' + c(x)u = Xu, 0 < x < 1, 
(1.1) u(O) = u(1) = 0 

where a(x) > a0 > 0, c(x) > 0, and b(x) are all smooth functions. This problem has 
an infinite sequence of positive [12, p. 37] and distinct [13, p. 212] eigenvalues 

0 < X1 < X2 < X3 < ... 

and a corresponding sequence of smooth eigenfunctions u'(x), U2(X), U3(X), 
which we assume normalized so that 

(1.2) 1 lu p2dx-1, p = 1,2, 

Of course, as is well known, the transformation 

(1.3) u(x) = exp(- 1 fb(t) dt)]v(x) 2 0 a (t) 
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718 ALFRED CARASSO 

puts (1.1) into the selfadjoint form 

(1.4) N[v] -(av')' + (c + b' + 4 (b2/a)v = Xv, 

v(O) = v(1) = 0. 

However, we consider the direct approximation of (1.1) by means of the finite- 
difference equations 

- {ak+1 /2 (Wk+1 - Wk) - ak-1/2 (Wk - Wk-1) } _ bk (Wk+1 - Wk-1) 

Ax2 2Ax 

(1.5) + CkWk= AWk, k =,2, ** *,M, 

Wo = WM+1 = 0 

where M is a large positive integer, Ax = 1/(M + 1) is the mesh spacing and the 
notation gk is used for g(k Ax). Equivalently, we may write (1.5) as the finite-dimen- 
sional eigenvalue problem: 

(1.6) LW = AW 

where W is the M component vector 

-Wl 

W2 

W= 

and L the M X M tridiagonal matrix 

al 01 0 
72 a2 02 

(1.7) L 
_1X2 

_? zYM aM i_ 

with 

(1.8) ak = [ak+1/2 + ak-1/2] + Ck AX Sk = [ak+1/2 + bkAx/2] and 

'Yk = [bkAx/2 - ak-1/2] k = 1,2, * , M. 

We will show that the latter procedure preserves the rate of convergence, namely O( AX2), 

which obtains in the selfadjoint case for a scheme of the same accuracy, (see [6]). This is 
Theorem 1. 

The matrix L defined above will be shown to be similar to an oscillation matrix, 
by means of a diagonal transformation D. Using the basic theorem on oscillation 
matrices, (see [4], [5]) and the fact that the entries of D alternate in sign, one imme- 
diately has a discrete analog of the Sturm Oscillation Theorem [13, p. 212, Theorem 
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2.1] namely L has positive distinct eigenvalues 0 < Al < A2 < * < AM and if 
Wi is an eigenvector belonging to Aj then Wi has exactly j - 1 nodes** in 0 < x < 1. 
Moreover the nodes of successive eigenvectors alternate.*** 

We will also show the following 
THEOREM 2. Let V' be an eigenvector of L corresponding to Aj and let aMax(Vj) be 

the maximum distance between successive nodes of VP. Then there exists an integer jo, 
independent of M, and a positive constant K1, such that for Jo ? j < M, we have 

(1.9) bmax(Vj) _ Ki(Aj)-1/ 
In the continuous case, the estimate (1.9) is usually obtained as a corollary to 

the Sturm Comparison Theorem [14, p. 224]. We will base the proof of Theorem 2 on 
a discrete maximum principle. We remark that in the continuous case, proofs of the 
oscillation and comparison theorems, based on a maximum principle, have been 
given by Protter and Weinberger in their recent book. See [12]. 

2. Symmetrization of the Discrete Problem. 
Definitions. For any two M vectors X, Y define their scalar products by 

M 

(X, Y) = AX E XkYk 
k=1 

and let 

M 1/2 

flXfl2 = AX E IXkI 
1 

k~l 

be the corresponding norm. 
If A is an Al X M matrix then we define 

lA2 = SUP |fAXfl2 

LEMMA 1. Fix Ax > 0 sufficiently small. Then there exists a nonsingular, positive, 
diagonal matrix D such that D-1LD = L is a real symmetric matrix. Moreover, IID|f2, 
1D-1112 remain bounded as M - oo, Ax -*> 0, (M + 1) Ax = 1. 

Proof. We construct such a matrix. Let 

rdi 01 

7' d2 0 

D= . where dj O j =1, ***, M 

LO dMi 

** As in [5], a "node" of Vi is a point where the graph of Vi, (i.e. the graph of the piecewise- 
linear function obtained from Vi by linear interpolation) intersects the x-axis. 

*** These observations about L are not new. (See Sinden [17] and Varga [18, p. 206].) 
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and di = 1 and let L = D-LD = (l.j). 
Since we require L= LT we must have 

dJ-11Iidj = dj-lIjidi where L = (luj) 

Further, since 1; = 0 for j > i + 1, j <i - 1, the dj's must be determined so that 

di 2 4_l d i = 21 * * M. 

Starting from di 1, we may solve recursively to obtain 

2 TTYk+1I =** 
i_1 / \ 
k=lVISk/) 

and, since k, #k < 0 for sufficiently small Ax, d i2> 0 if Ax is small enough. 
With D constructed as above, we have 

[a, _(7201)"12 0 

2(72Al~l/2 

(7**2-01)-1 

AX2 

0 (YMfM1)'1 )2 aM - 

and we must show that fIDIf2, I1D-1112 remain bounded as M oo. Let 

Q i= r (1 - )bk+A 
Mc= V 2ak+1,2 

and 

Pit= I (1 + 2 

then di2 = Qi/Pi. Now for sufficiently small Ax, 

log I - -_+A) 
bk+ 

- O (Ax2) 
2ak+l,2 2ak+l /2 

so that 

log Qi = -Ax bk-+ Ax E O(Ax). 
k=l 2ak+l /2 k=1 
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Hence, 

lim [log Qi] = - I | P(t) dt 
Ax-eoi--+0o; iAx=x 2 0 a(t) 

Similarly, 

lim [log Pi] = -| (t) dt. 
Ax-+O, i-0o; iAx=x 2 0 a(t) 

Consequently, 

lim di[exp (- f 2 d(t) ] <K < 

which shows both fIDfl2, fID-1f12 remain bounded as Ax -> 0, M > oc, (M + 1) Ax 
= 1. 

LEMMA 2. For Ax sufficiently small, the eigenvalues of L are strictly positive and 
they remain bounded away from zero as M -s oo, Ax -> 0, (M + 1) Ax = 1. 

Proof. For Ax sufficiently small, 'Yk, jk < 0. Hence if L = (lij) and Q? = 

EZ#i Ilijj, then 

Qi = (ai+l/2 + ai-,/2)/AX2 

and lji = (ai+1/2 + ai-1/2)/ AX2 + C, _ Qi since ci > 0. 
By Gershgorin's theorem, [7], the eigenvalues of L lie in the union of the discs 

[z - lid Qi in the complex plane. Hence if A is an eigenvalue of L, then A > 0 
since A is real. 

Now let lh be the finite-difference operator corresponding to -L, i.e. 

[lhV]k [(ak+1/2 + ak-1/2) + CkAx] ? [ak+1 /2 + bkAx/2] [lhV~k = 
-Ax2 Vk+Ax2 

V 

+ [ak1 /2 bkAx/2 ]Vk1. 

Then, for sufficiently small Ax, lh is of positive type [3, p. 181] and so satisfies the dis- 
crete maximum principle [16, p. 23, Lemma 2.3]. Consequently [16, p. 108, Theorem 
7.1] if w(k Ax), k = 0, 1, * * *, M + 1 is an arbitrary real-valued mesh function, 
there exists positive constants K and a such that if 0 < Ax < 6, 

(2.2) IlwjjO0 _ Max IwkI < Max {Iwoj, IWM+1I} + KII(lhW)jII,,. 
k 

Now let V = {Vk I kM=i be an eigenvector of L corresponding to A. We may assume V 
to be real. Defining vo = VM+1 = 0, LV = AV is equivalent to 

(2.3) [lhv]k = -AVk, k 1, M . 
Hence, using (2.2) and the fact that A > 0, 

flvlJ0. ? KlI (hv) IlI0 =AKflvlj. 

i.e. A > 1/K > 0. Q.E.D. 
COROLLARY. Let r be the M X M matrix given by 
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?1 1 01 

-1 

r=[ 41~~~(1)'4 

and let ii be defined by (2.1), then r- L r is an oscillation matrix. 
Proof. r-1 I r is a positive-definite real symmetric matrix with positive elements 

along the first super and sub diagonals. The proof now follows from a theorem of 
Gantmacher and Krein [4, p. 103]. 

3. Convergence of the Characteristic Pairs of L. Let 0 < Al < A2 < ... < AM 

be the eigenvalues of L. Fix a positive integer p and let VP(Ax) be the eigenvector 
corresponding to Ap( Ax), normalized so that jI VP j2 = 1. Let VP be the continuous 
piecewise-linear function, vanishing at x = 0, 1, and which, in the interior of [0, 1], 
is obtained from VP by linear interpolation. Consider the families { Ap(Ax) }, 

Vp( Ax) } as the mesh size Ax -* 0. 
Using Lemma 1 and considering the symmetrized problem, one can give a direct 

proof of uniform convergence of VP to uP and Ap to Xp as Ax -- 0. (See [2].) This 
method of proof is based on the compactness of the family { VP( Ax) } in C[0, 1] and 
has been used several times by Parter (see [9], [10], [11]) but it does not immediately 
yield estimates on the rates of convergence. Nevertheless we will make use below 
(see Eq. 3.8 (1)) of the fact that Ap -> XAp together with Lemma 1 above to obtain 
these estimates. The proof given below is a modification of that given by Gary in 
[6] for the selfadjoint case. 

THEOREM 1. Let AP, VP be characteristic pairs of L with I IVPjj2 = 1. Let D be the 
diagonal matrix of Lemma 1. Let uP be an eigenfunction of 2 corresponding to Xp and 
let UP be the M vector obtained from uP by mesh-point evaluation. Assume uP(x) nor- 
malized so that 

(3.1) jID-'UPIj2 = jjD-VPj1j2 

then as Ax -O 0, we have 

(3.2) IXp - ApI < K Ax2 

(3.3) IIUP - VP112 < K1Ax2 
where K, K1 are positive constants depending only on p. 

Proof. Because the difference scheme in (1.5) is properly centered and we assume 
sufficient smoothness of uP and the coefficients of 2, we have at the mesh points, 

(3.4) VW] = LUP + r = XpUP 

where r is the "truncation" error and 

(3-5) 11 112 !? K(p) AX2 where K is a constant. 

Let L = D-1LD have orthonormal eigenvectors X1, X2, ***, XM and write UP as 
a linear combination of the DXj's: 
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M 

(3.6) UP= E orDXj 
j=1 

so that 

M M 

LUP = EorjLDXj =E ojAjDXj 
j=1 j=1 

then 

M 

=(Xp -L) Up 1: ofj (Xp-Aj)DXj 
j=1 

and 

M 

(3.7) > 2X2 - = fDD'rl2222 ? 1D'l[22ll22 ? Ki(p)AX4 
j=l 

where K1 is a constant. 
Now, the eigenvalues of L are distinct and converge to the corresponding distinct 

eigenvalues of V. It follows that 

(3.8) inf {IIX - AI} >?o > 0 

for all sufficiently small Ax. Hence, on using (3.7), 

(3.9) j2 K= Ax4. 
j#1, 

From (3.9), (3.6) we obtain 

(3.10) 2 = fID-'UPI22 ? O(5X4) >-21> 0 

for all sufficiently small Ax. 
Thus 

(3.11) IXp - ApI ? K2(P)AX2. 
Since VP = jDXP for some : and flXPfl2 = 1 we have 

1i1 = IID-1VPII2 
On taking square roots in (3.10), we have 

0rp = JID-'UPIj2 +0 (AX4) 

and we may assume that o-p and d have the same sign; hence using (3.1), 

(3.12) (0_P- _3) = O (AX4) . 

Writing UP -VP = Ejp orjDXj + (ap - )DXP we have 

(3.13) -ID-'(Up- VP)fl22 = r~j2 + (0_ _ )2 = 0(A4) 
joP 

i.e. 

(3.14) flUP - VP122 = flD1l22flD-1(UP - VP)J22 ? K3(p) Ax4. Q.E.D. 

Notice that the above inequality also implies uniform convergence at the rate of 
0( Ax)3/2. 
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4. Proof of Theorem 2. 
LEMMA 3. Let 0 < A1 < * < AM be the eigenvalues of L. Then there exists a 

positive integer jo, independent of M, such that for jo _ j < M we have 

(4.1) Kij27r2 < Aj K2j2 r2, K1, K2 positive constants. 

Proof. In the selfadjoint case this result may be found in Blickner [1]. In the 
present more general case we will need to estimate the off-diagonal elements of the 
matrix L in Lemma 1. 

With the notation of (1.8) let 

(4.2) qk = Yk+1Ik = (ak+1/2 - b )( + 2b ) k = 1, * *, M - 1 

Since b(x) E C1[O, 1], we have by the mean-value theorem, 

(4.3) qk= (ak+1/2)2[1 - 2gkAX2 + O(Ax)] 
where 2/Ik = [bk2 + 2ak+1/2b (ik)]/4ak+1/2 for some ok such that k Ax < ok < (k + 1) Ax. 
Hence on taking square roots 

(4.4) qk = ak+1/2[l - /kAX + O(,Ax)], lk = 1, *, M - 1 

We now proceed to estimate the quadratic form (X, LX) where X is any complex 
M vector of norm 1. Defining xo = XM+1 = 0, and using (4.3), we may write 

M Xk+1 2 M 

XLX) = E kAx E | 2 Ax E CkIxXk 
(4.5) k=O AXk=l 

M M 

+ 2Ax E /Ikak+1/2Xkxk+1 + O(Ax)Ax E XkTk+l 1 
k=O k=O 

Now let 0 < ao < a(x) < a, on [0, 1] and let 

11cfl0. = Max IckI jjp1181 
= Max ikI - 

k k 

We have 

m I Xk+1 - Xkl1 (4.6) (X, LX) < a1Ax I, 2 + 1cjlj. + 2ailljgjjl + 1O(/Ax)I 
k=O AX 

and 

(4.7) (X LX) > aoAx E MXk+ 2 XkI 2al||8|| - |0(Ax) 
k=O Ax 

Let H be the tridiagonal M X M matrix defined by 

2 -1 

(4.8) H= Ax2 
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It is easily verified that 
M 

1Xk1-X 
12 

(4.9) (X, HX) = Ax E AXk+ 2 
k=O AX 

and that the eigenvalues Oj, j 1, * , M, of H, arranged in increasing order, are 
given by 

4 Ax (4.10) Ax 2 r 

Inserting (4.9) into (4.6), (4.7) and using the maximum principle for the eigenvalues 
of real symmetric matrices shows that 

(4.11) ao~j - 211fultI - IO(Ax)I < Aj < alj~ + I1cl, + 2aiff,ulff + IO(Ax). 
Using (4.10) and an elementary calculation, the proof follows from (4.11). 

Proof of Theorem 2. Let 

WI.= 

w WMDu 
be an eigenvector of L corresponding to Aj. Then Wj satisfies the difference equa- 
tions: 

[2 + (Ck A j) Ax] j + [ak+ /2 + bkAx2] 2 
k Wk Wk 

1+ 

(4.12) ? [1 & Wk-l = 0, k = 1 **, M 

where woj = W +1= 0 and Wk = 2 (ak+1/2 + ak-1/2). 

Let 

= -[2 ? (Ck- Aj) xX21 = [a 
,/2 + - bkAXf 

L ~~Wk IL Wk 

k= [-ak-k1 /2 2 bk4x] 

and let A be the tridiagonal M X M matrix 

0 

Y2 

(4.13) A= 

* *MAM-1 
L.0 eM &M _ 



726 ALFRED CARASSO 

Then we may write (4.12) as 

(4.14) AW' = 0 

or equivalently 

(4.15) (P-1AP)P-1Wj= 0 

if P is any nonsingular matrix. 
Choose P to be the diagonal matrix 

FPi 0 

(4.16) P 

LO PMJ 
where pi = 1 and pt2 =7Jk=1 (ik+1/Ik), i - 2, * , M. 

For all sufficiently small Ax, pi2 > 0 and as in Lemma 1, P symmetrizes A. Let 
(k = (7k+ 1k)I/2, then 

&1 O1 0 

(4.17) PF1AP = 

_TM-1 

Lo 0-M-1 &M 

Observe that by the mean-value theorem 

(4.18) COkCOk+l = 
(ak+1/2) 2[l + O(AX2)] as Ax -*0. 

Also if b(x) E C'[0, 1], 

F(ak+ 2 )2 + ak+l /2(bk- bk+l) AX _ bkbk+ ax2] 

(i~k+I~k) 2= 
(4 .19 ) CWk~k+ 1j 

(ak+l/2)2[1 + O(AX2) ]Was Ax 

(ak+1/2)2[1 + O(AX2)] 

Hence, 

(4.20) =k (i7k+l&k)I12 = 1 + O(AX2) as Ax >0 . 
Let V = P-'Wj and write the system (4.15) as 

- [2 + (Ck - Aj) Ax2 Vk + 0TkVk+I + ?kVk-1 = 0, 

(4.21) ..,2x. 
Vo = VM+ O = ? 

Let K1 and K2 be the constants in Lemma 3 and define 
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(4.22) = Aj/K2. 

Let y(x) = sin #jx. Then Yk = y(k Ax) satisfies the difference equations: 

(4.23) -[2 - IjAX ]Yk + Yk+1 + Yk-1 = 0, k = 1,2, ... 

where 

4 2 9fJAX (4.24) A j = 2 sin 2 

The distance between successive zeros of y(x) is 7r/,3j = (K27r2/Aj)l12> 1/j forj large 
enough by Lemma 3. 

Let v(x) be the piecewise-linear function corresponding to "graph" of vector 
V = P1Wj. Define the auxiliary function z(x) by 

z(x) = y(x)/v(x) whenever v(x) $ 0 . 

We proceed to estimate the distance between successive nodes of v(x) by inves- 
tigating the difference equation satisfied by z(x). 

We may assume that 8Max(V) > 3 Ax; for if aMax(V) _ 3 Ax, then in particular, 
aMax(V) < 3/(M + 1) < 3/j < 37r(K2/Aj)1/2 for all sufficiently largej. If 6Max > 3Ax, 
then there exists a set N of consecutive mesh points, containing at least three mem- 
bers on which v(x) is strictly positive (or strictly negative). Let N' be N minus the 
two end points of N. Since Zk = yk/Vk for k E N', 

(4.25) [2 + (Ck - )Ax2) 
1k 

+ Vk+lZk+l + Vk-lZk-1 = 0, k E N'. 

We now show that for all sufficiently large j, the difference operator lh (or- lh if v is 
strictly negative) occurring in (4.25) is of positive type, and hence satisfies the discrete 
maximum principle: 

It is sufficient to show that if j is sufficiently large, 

[2 - /I;AX] Tk 
(4.26) 2 -A)Ax2/k > 1 if k E N'. 

2 +(Ck - A j) Ax k =@ 

From (4.24) we haveuj _ Aj/K2 ? Aj/2a, if K2 is chosen so that K2 > 2aj, where 
a, is an upper bound for a(x) on [0, 1]. Hence, 

(4.27) (2 - /LjAX2)0wk = 2 - ,ujAX2 + O(Ax2) 

since j Ax2 < 4 and Sk = 1 + O(AX2). Now, 

2 - ,UjAX2 + 0(AX2) ? 2-AjAx2/K2 + O(Ax2) 

> 2 - AjAX2/2cok + 0(Ax2) 

2 + (Ck - Aj)Ax + (A; - 2Ck) AX + O (AX2) 
C)k 2cWk 

i.e. 

(4.28) (2 - ,AjAx2)-k ? 2 + (Ck - Aj) Ax2/ok 
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if j is sufficiently large, since we assume c(x) is bounded. 
Furthermore, 2 + (Ck- A)AX2/ck is positive for k E N' since Vk, Vk+l, Vkl have 

the same sign, on using (4.21). Thus (4.26) is satisfied. 
Suppose now that z(x) has two zeros in the interval spanned by N. At any mesh 

point lying between the two zeros we must have z(x) - 0 by the maximum principle. 
Since z(x) = 0 if and only if y(x) = 0, this means that the distance between suc- 
cessive zeros of y(x) is ? Ax = 1/(M + 1). However, as already noted, this distance 
is > 1/j and j < M. 

Thus y(x) has at most one zero in the interval spanned by N. Hence the maxi- 
mum distance between successive nodes of v(x) must be less than or equal to 7r/,3 

+ 2Ax. Since Aj = 0(1/Ax2), we have 

(4.29) aMax(V) < K(Aj)-1/2 

A similar estimate is valid for the eigenvector Wi of L since Wi = PV and P is a 
positive diagonal matrix. Q.E.D. 

COROLLARY 1. Let the eigenvectors { VP} of L be normalized so that IVP = 1. 
Then there exists a constant K and an integer po, both independent of M such that if 

Po < p < M 

(4.30) IIVP I Max IvkpI < Kp"2 . 
k=l-.* M 

Proof. Let WP be the normalized eigenvector of L = D-1LD corresponding to Ap. 
Since WP = D-'VP/IlD-'VP12 and D-1 is a positive diagonal matrix, the distance 
between successive nodes of WP satisfies an estimate similar to (4.29). Since WP is 
normalized we have 

(4.31) (WP, LWP) = Ap. 

Hence, using inequality (4.7) in the proof of Lemma 3, we get, 

(4.32) Ax Iw+i wk | < 2Am 
k=O AX ao 

for all sufficiently large p. 
Let r, s be any two positive integers with 1 < s < r < M. Then, 

| r SPi =|A Wk+l Wk l Iwr - ws, AxZ I: 
k=s Ax 

(3 
[(r - s)AX]1/2 (Ax E k+ Wk) 

< [(r - s)AX]1/2(2Ap/ao)1/2 

on using Schwarz's inequality and (4.32). Now choose r so that lWrPl = IIWPI'fl0 > 0 
and let s be the integer nearest r with the property that W8pWrp < 0. (s need not 
necessarily be less than r.) We then have for sufficiently large p, by Theorem 2, 

(4.34) 1 (r - s)AxI < 2aMax(WP) < K'(Ap)-2 

Hence using (4.33), (4.34) 
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flW1fl0 ? lw,' - w8 j < [(r -s)Ax]"'(2A,,/ao)"' 
_ K"(A,) )/4 

for sufficiently large p and the proof follows from Lemma 3. 
Remark. The estimate (4.30) was obtained by Btckner [1] in the selfadjoint case 

using an elementary device. It would be interesting to know whether or not the dis- 
crete eigenvectors display this growth as M -> cc. In the case of the analytic prob- 
lem (1.1) it is known (see [15, p. 334]) that the normalized eigenfunctions are uni- 
formly bounded in the supremum norm. 

COROLLARY 2. Let { VP}m1 be the eigenvectors of L normalized so that IVP - 1, 
p=1, * ,M.Then, 

limsup V I -} < 
M-4oo; Ax--+O; (M+?)Ax=l p=1 Ap 

Proof. This follows immediately from Lemmas 2, 3, and Corollary 1. 
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